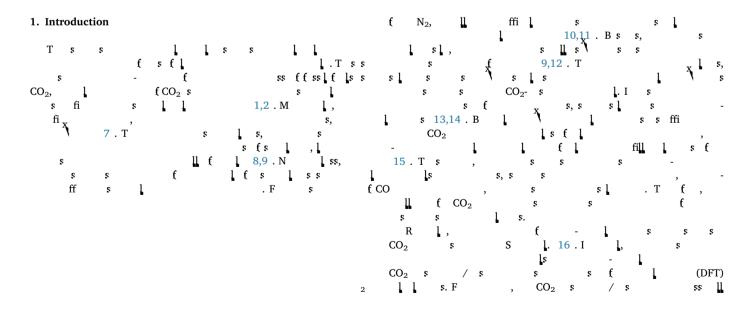


C slss ll S D

A 1 S f S



School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan 114051, Liaoning, China School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA Harvard SEAS-CUPB Joint Laboratory on Petroleum Science, Harvard University, Cambridge, MA 02138, USA State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264000, Shandong, China

ARTICLE INFO

$A\;B\;S\;T\;R\;A\;C\;T$

 CO_2 5 5 s l s S £ 10^{13} f 18.56 1 CO_2 s f -6.23V. M f CO₂ CO_2 \$ l 900 K. I s f 10^{13} 10^{14} 2) (4.95 s (8.04 CO_2 f ļ s l CH₄. I ls. I s f N_2, H_2 10^{13} f CO_2 10^{13} 18.56 f 11 s L CO₂ l ls s s- s

*C s s : S | f M | ls M | l , U s f S T | L , A s 114051, L , C .

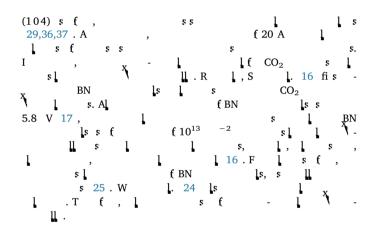
E-mail addresses: (Q. W).

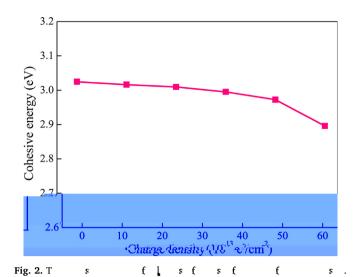
s:// . /10.1016/. s s .2020.147265 R 22 A 1 2020: R s f

22 A | 2020; R s f 2 J | 2020; A 11 J | 2020

Available online 17 July 2020

0169-4332/ © 2020 Elsevier B.V. All rights reserved.


2. Methods


s f (DFT), D \downarrow^3 28 1 1 ∐ (l l s (CO₂,\$ s f $CH_4)$ (104)s f , s (104)s f N_2, H_2 f 1 29,30 . T (GGA) f (PBE) 31,32 f (DNP) s DFT (DFT-D) G 33 G В 34 f II В Ц S S . B s , 0.002 H /A f 35 sf

3. Results and discussion

3.1. Stability of calcite surface with charge-modulated

Fs
$$f \coprod_{i}$$
, F. 1as s s \downarrow s $f \coprod_{i}$

3.2. Effect of charge density on adsorption behavior of CO_2 on calcite surface

$$E_{ads} = E_{total} - (E_{calcite} + E_{gas})$$
 (3)

(V), E_{total} \$ l f f s (\mathfrak{s}] (V), $E_{calcite}$ \mathfrak{s} f E_{gas} s s f (V), l ([(V). CL ļ, 42,43 . F f CO_2 s -0.38 V. sf f CO_2 s s, 6.23 10^{13} s 18.56 fCO_2 16 ls f . M 📙 sf CO_2 s 0.61 f CO_2 D fi 🚶 f C = 0f CO₂. W C=O fCO_2 s f F . 3, f . 3. As s £ 1 C=O CO_2 f s f S s s. I fi [\$ s. F f CO_2 £ f CO_2 . T f, f CO₂

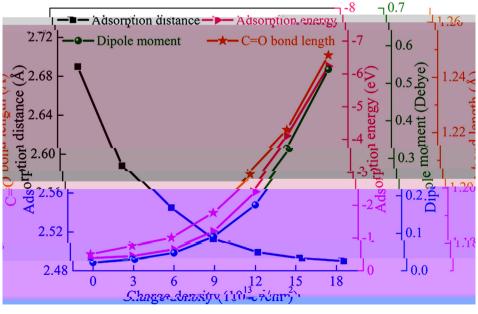
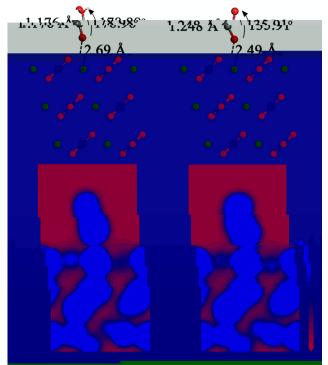



Fig. 3. As s, s, , , , , , , CO_2 , , C=O , s, f, s, f,

Fig. 5. K

.()Ds

(a) $\rho = 0 \text{ e-/cm}^2$ (b) $\rho = 18.56 \times 10^{13} \text{ e-/cm}^2$

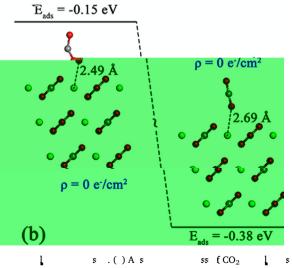
 CO_2 L L S L S S f f

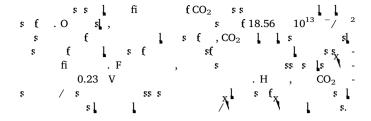
3.3. Adsorption mechanism of a single CO_2 on calcite surface at critical charge density

 $E_{ads} = -0.38 \text{ eV}$ 2.69 Å $\rho = 18.56 \times 10^{13} \text{ e}/\text{cm}^2$ $E_{ads} = -6.23 \text{ eV}$

ss f CO₂

 $f CO_2$

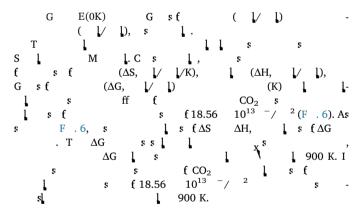

l s f

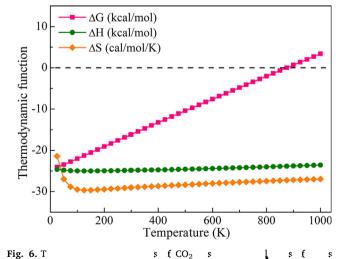

3.3.1. Detailed structure and electron density distribution of ${\rm CO}_2$ -calcite interface

F . 4 s 10¹³ -/ (18.56)s f (F . 4a), CO_2 0 O-C-O l s 178.98; 1.176 A), s (0 f CO_2 \$ 2.69 A, CO_2 CO_2 \downarrow \downarrow (O-C-O 1 C=O s 180; 1.176 A) 20 . F CO_2 \downarrow \downarrow (18.56)2.49 A; 2.69 A 178.98 135.91; C = O1.176 A 1.248 A. B s s, CO_2 s fs (F . 4b), CO_2 CO_2 \$ l, sl

3.3.2. Reversibility of CO₂ adsorption and desorption

f CO₂x s s [5 5 $f_{\chi}CO_2$ (F . 5). F . 5a s fCO_2 s f ss. Af CO_2 10^{13} f 18.56 s . I 11 s CO_2 fi . F ss, F . 5b s fi fCO_2




3.3.3. Spontaneity of CO_2 adsorbed on calcite surface with critical charge density

$$S=S_{trans} + S_{rot} + S_{vib}$$
 (4)

$$H= H_{trans} + H_{rot} + H_{vib} + RT$$
 (5)

$$G = E(0K) + H - T \cdot S \tag{6}$$

f

\$.

3.4. Applications of CO_2 capture and separation

3.4.1. CO₂ capture capacity of calcite surface at minimum charge density f CO₂- \$ ls, CO₂ . B **f** CO_2 , fi s , s f L CO₂ . As s 11 (1 f CO_2 ff S fi s (2CO₂-2CO₂-) f CO_2 s f (F . 7a and 7b). f CO₂ Bs s. f fif CO₂ 10^{13} ² (F . 8a). As f 18.56 s fill fif CO₂ 11 s s, CO_2 Т fCO2 f CO₂ s (F . 9). As f ∐ CO₂ 1 s (2CO₂s . A $2CO_{2}$ -) f CO_{2} . W f CO_2 S $f CO_2 f$ 0.52 V 42,43 . As . 9 ², **f** 10^{13} s 8.04 s l s, CO_2 l s . T fi CO_2 CO_2 l s. I CO_2 $(80.838 A^2),$ 1 s (f [s) s 10^{14} , CO_2 \$ 4.95 10^{13} 8.04 ls (T | 1), 10^{13} 1 8.04 f CO_2 . T f l s f CO_2

3.4.2. Separation performance of CO₂ from calcite surface in gas mixture CO₂- \$ -1 s S ls f CO_2 s fi $s(CO_2/N_2)$ sff 4,44 . T CO_2 f fl s (45.N CH₄) \$ ffi , CO₂ \$ 46,47 . H SS ss s $f H_2$ CH_4 CH₄. £ £ CO_2 10^{13} 8.04 10^{13} 18.56 F . 10). T s s 10^{13} 2 8.04 CO_2 \downarrow s) f CO₂ 10^{13} -/ (F . 9). T , 18.56 CO_2

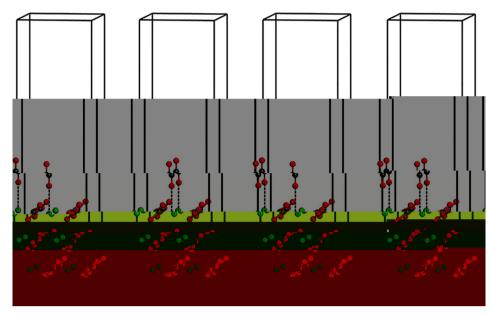
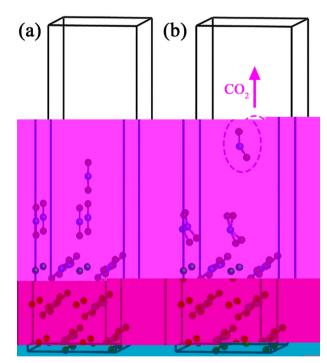
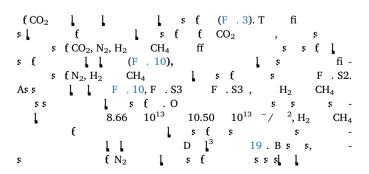
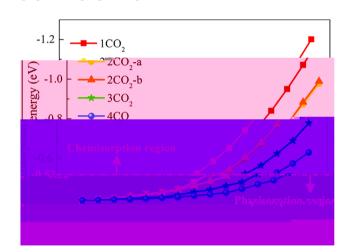





Fig. 7. T \downarrow s fi s f \downarrow \downarrow CO₂ \downarrow \downarrow s f .

C s	f CO ₂ -	s	f	f s		s s l s.
A s	ļs		C -/ ²)	s (10 ¹³	⁻²)	(10 ¹⁴
G		18	61.70		7.39	
В	\$	19	52.50		6.73	
N-	-	\$	40.90		2.45	
22						
C_3N	s 20		22.00		2.13	
Calcite (this study)			8.04		4.95	

4. Conclusions

Is , DFT ss ss

 \mathfrak{s} f CO_2 f s l CO₂ s $18.56 \quad 10^{13} \quad -/$ -6.23 V.T s s s CO₂ s L s , s l s f. U ss s f CO₂ sl s s CO_2 \$ 900 K. C 4.95 , $\frac{1}{10^{14}}$ ls f CO₂S CO_2 f 8.04 10^{13} -/ 2 . M $_{\downarrow}$, isi fs CH₄. CO_2 f N_2 , H_2 s (s lss s l s f 11 £ s l f CO_2 \$ \$ (CO₂/ $f CO_2$ s fi f $8.04 10^{13} 18.56 10^{13} -/ ^2$

CRediT authorship contribution statement

Declaration of Competing Interest

Acknowledgements

```
T f f N N N S F C (G N . 51634004, 51874169 51974157) s f L -
```

References